/,

REC|TE

content management

<

Recite CMS Control Panel Widget
Development Guide (BETA GUIDE ONLY)

Recite CMS 2.1.8

Recite CMS Control Panel Widget Development Guide (BETA GUIDE ONLY)
Copyright © 2010 Recite Media Pty Ltd

Table of Contents

3 R I) o Yo 1 ot f [0 o PP 1
(1= wul] g Yo JS] o= o o= 1
2. Crealing @ Widget ..o e e 2
(D[t (] VA o U o o 1 = 2
Creating PHP Controller File ... i e e e e e e e e ettt et r e aa e eaneas 2
Creating @ View Template oo e e 4
Creating a JavaScript Controllar File ..o e 5
Creating @ Widget €SS File ittt i e ettt r et e e aaneeaaneas 6
118 1 21 1= 7/ 6
G T V7= T oY =T T | 7 e S 7
NN E= T a LYo o E Y7 =] g = P 7
The Recite Delegate Element .o i e e e r e a e e aaneeas 7
Lo T L= LT T V2= 1 = 7
Listening FOr Delegate EVENES ...viiiiiiii i it et e e e a e a et aas 7
Listening FOr Other EVENTS .ot e et a e e ae e enes 8
Automatically Triggered EVENES ..o e 9
S = Y B R 1= T T3 = T 1= 10
Triggering LOAdiNg MESSa0ES .uuiiuiiiitit ittt it ittt ittt te ettt e ettt e et e eaa e et e eane s aaeeeaneeanes 10
[[Ta |1 g Yo I oY= Ta [o Yo I\ U=ToT Y [=T R 10
Triggering Status Updates ..o i e e 10
o [To [Yo IS o= L o =T Y= T 1= 11
Ty = DG 2o [6T o= 12
T o o T o e Tl =137 [i T 13
74 Lo T o\ F= T o = T =T 0 1= | o PP 14
R = 1Y = 1Yo o o Y o P 15
(00T] nTe] T=T oY ul 2=T o |« = 15
(@feTnp]sTe] gT=T g ul N Toi o < N =) 16
Component RECIEE_Dialog .oiiuiiiiiii i e 19
(@feTa]sle] al=T g ull AN=Toi | < B = | B e o 21
(60eTg] sTe] g T=T oY ol =T o < o o 0 I PP 22
(@feT g p]sTe] gT=] o) ol N Toi | o N =T P 24
(o] g o] aT=T o A 2 T=Tol | o =T U1 o 1 P 25
F N I o [a =T o <Ta B V=T o) P 27
1o Yo U] L= Yo =P 27
1o o U] = =] =] =P 28
MOAUIE: ASSEES MIlTOIS .oiueiitiiiiitiitet it et et e s e st s s e san s e saeear s an e ransanssnesansanssnesnnsanernnannens 29
1o Yo U] L= @1 =7 o o -] ol 30
1 [Te 1| = (=T o] o [T 31
1o Ya 101 L= @ e g oV o o 1= o | = PP 32
1o Ya U1 L= oo o1 g = ol ol PP 33
oo U] L= 1= o PP 33
1o Yo U1 L= o o o 0 1= 34
1 T 11T IR =] of [T - 35
Module: Mailing ListS ..uiiiiiiii i i e e et 36
1T L 1L == T [P 37
1o Yo [0 L= Y <= T oo o PP 37
1o 101 =T] o] =1 =T PP 38
1o o U] L= U =T = o PP 39

List of Examples

2.1. Sample widget controller file (CoNtroller . Php) civeiii i i i e et ae e aeeeaeeaas
2.2. Sample widget view template (IndexX. L) tiiiiiiiiii i i e e
2.3. Sample JavaScript controller file (ANdeX.3S) tiiiiiiiiii i i i e i e i re e i aaeeas

Chapter 1. Introduction

The Recite 2 Control Panel uses a widget-based system, meaning all aspects of managing content on a
Recite web site involves interacting with a series of different widgets.

A Control Panel user can easily manage their widgets. Each user can have any number of tabs; a tab has
one or more columns; each column can have any number of widgets; widgets can be added, removed
or repositioned on-demand.

Widgets are written using a combination of PHP, JavaScript, HTML. Sometimes you will also use custom
CSS. JavaScript is heavily used.

Your widgets can interact with other parts of Recite as you please:

e They can interact with modules you develop. This is the typical scenario for using custom modules
- if you develop a custom module you'll need a way to manage its data.

e They can interact with existing modules. For instance, you could write your own file upload widget
if you didn't want to use the default Recite File Import widget.

e They can interact with third-party services. For instance, you could write a widget that displays
statistical data from Google Analytics.

e They can interact with other widgets. For instance, you might want to add a new widget when
a certain action occurs, or you might want to tell an existing widget about something that just
happened on your custom widget.

This guide teaches you how to develop your own widgets for Recite.

Getting Started

To develop custom widgets you will need an understanding of PHP, HTML and JavaScript. Recite makes
use of the jQuery JavaScript framework.

Additionally, you will need an Integrated Development Environment (IDE) or text editor with which to
write code, as well as a working copy of Recite 2.

Chapter 2. Creating a Widget

In this section I'll show you how to create a widget. This will only be a basic widget that demonstrates
the most basic development details; more advanced topics are covered later in this guide.

In this example we will create a widget called custom_example.

Directory Structure

All Control Panel widgets belong within the widgets directory in the Recite library (that is, in ./1ib/
widgets).

You must create a new sub-directory for your widget. This can either be within one of the existing
directories or you can create your own.

We are creating a widget called custom_example, so we create the directory ./1ib/widgets/custom/
example. All of our widget files belong this directory. No other widgets can then belong within this widget.

We will create this widget based on the Application Cp Widget Module Abstract class, which dictates the
directory structure of the widget.

This directory then has the following structure:

./1lib/widgets/custom/example

| - files/ Holds files that can be loaded in the Control Panel
I | - 3s/

| | | - index.js Holds JavaScript controller file for "index" action
| | - css/

| | | - index.css Holds a stylesheet to help render the template

| - templates/ Holds templates used to render the widget

| | - index.tpl Template for the "index" action

| - controller.php Main controller for widget

We'll now cover how each of these files should be structure.

Creating PHP Controller File

This is the main file required for a widget. In this file we define a new PHP class for the widget, which
extends from the Application_Cp Widget Module_Abstract class.

Our widget class must be named CpWidget_widget_name_controller. So in our case the class will be called
CpWidget custom_example_controller.

The skeleton code for this class is as follows:

<?php
class CpWidget_custom_example_controller extends Application_Cp_Widget_Module_Abstract
{
}

?>

There are several methods that you must implement in this class so it can be used in the Control Panel:

e toString(). This returns a string that is the title of your widget.

Creating a Widget

e getWidgetSize(). This returns an indication of how much space on the user's screen your widget
needs to be used effectively. The Control Panel will aim to give the widget its required amount of
space when added to a user's dashboard.

This method can return one of the following constant values: self: :SIZE SMALL, self::SIZE_MEDIUM,
or self::SIZE_ LARGE.

e getCategories. This returns an array, each of which element is a string. The values it returns will
appear in the widget browser when the user tries to add a new widget.

e getDescription(). This returns a brief description of what the widget is used for. It will appear in
the widget browser when a user views the widget.

e getDependentModules(). This returns an array, each of which element is the string name of any
Recite modules this widget relies on. If the module doesn't exist in Recite or the client the user
belongs to doesn't have access to the module, the widget cannot be added and it won't appear in
the wiget browser.

e indexAction(). This method is executed when the widget is loaded in the Control Panel. Here you can
put any logic required for displaying the widget. After this method has been run the corresponding
./templates/index.tpl template will be rendered. You can also optionally define the JavaScript
controller file for this action in ./files/js/index.js

Note

In addition to indexAction(), you can also define other actions that can be called from your widget.
To keep things simple we'll only use a single action for now.

Here's a more complete example of the controller.php file.

Creating a Widget

Example 2.1. Sample widget controller file (controlLer. php)

<?php
class CpWidget_custom_sample_controller
extends Application_Cp_Widget_Module Abstract

{

public function __ toString()

{
return ‘Sample Widget';

}

public function getWidgetSize()

{
return self::SIZE_SMALL;

}

public function getCategories()

{
return array('Custom');

}

public function getDescription()

{
return translate(

'This widget is used to demonstrate how to create Recite widgets.'

)s

}

public function getDependentModules()

{
return array('pages’);

}

public function indexAction()

{
// perform custom logic here
// get the view so you can assign data to it
// before the index.tpl template is rendered
$view = $this->getView();
$view->someData = 'Some data!';

}

}

?>

At this stage you can now add the widget to the Control Panel. However, until you create a view template
nothing useful will display.

Creating a View Template

The next step is to create a view template for the indexAction() method. This template is a text file that
belongs in ./templates/index.tpl in your widget directory. This template must be written using HTML
and Smarty Template Engine markup.

Creating a Widget

Technically you can use whatever markup you like in this file, but to use the standard Control Panel
display all your markup should be within {widget} Smarty tag. This is a built-in plug-in used to help
creating widget templates.

If you want a row of buttons at the top of your widget (beneath the wiget title and control buttons), use
the {widget_buttonpane header=true} Smarty tag.

Likewise, if you want a row of buttons at the bottom of your widget use the {widget buttonpane
footer=true} Smarty tag.

To add a button, use the {button} Smarty tag.

Any content that lies between button panes (or even if there are no button panes) should lie within
{widget_content} tags.

Below is a sample template. It makes uses of the $someData variable we assigned in the controller.php
file.

Example 2.2. Sample widget view template (index. tpl)
{widget}
{widget_buttonpane header=true}

{button name='foo'}Show Alert{/button}
{/widget_buttonpane}

{widget_content}
someData variable: {$someData|escape}
{/widget_content}
{/widget}

Now when you add your widget you will see some more useful information.

Creating a JavaScript Controller File

In the previous template example we created a button. In order to make this button do anything useful
we need a JavaScript controller file.

This file belongs in the ./files/js/index.js, and defines a new JavaScript object that defines certain
methods.

The object this JavaScript file defines must be called Cpwidget widget name_index. In our example this
would be CpWidget custom_example_ index.

This object can define the following methods, each of which is passed the widget's DOM element as its
only argument:

e init(). This is called when a widget is created prior to it appearing on the user's dashboard. It is
also called when a widget is refreshed.

e postShow(). This is called after the widget is displayed on the dashboard.

e destroy(). This is called when a widget is removed; when a new tab is loaded; just prior to a widget
being refreshed.

Typically you will only need to define the init() method, although sometimes you will also need the
destroy() method.

Below is an example of how this file should look. In this example we bind the click event to the button
we created. When the button is clicked a dialog box will appear.

Creating a Widget

Note

We'll cover the Recite_Tabs and Recite_Dialog user-interface classes later in this guide.

Example 2.3. Sample Javacript controller file (index. js)

var CpWidget custom_example_index = {

init : function(widget)

{
Recite_Tabs.Bind(
widget,
widget.find("button[name=foo]"),
‘click',
function(e) {
e.preventDefault();
Recite_Dialog.Alert({
msg : 'Button was clicked!’
})s
}
)
}

}s

In this example we bind the click event using the Recite_Tabs.Bind() method, rather than calling bind()
directly on the button element. We do this so the event is automatically unbound when the widget is
destroyed. The alternative is to manually unbind the event in the destroy() method.

Creating a Widget CSS File

You can style content within a widget as required by creating a CSS file. As noted earlier in this chapter,
it is stored in the ./files/css directory of the widget. The name of the CSS file corresponds to the action
it is being loaded for. Typically this will simply be index.css.

When creating your CSS it is possible to override page-wide styles. Typically this is not desirable, so you
need to restrict your CSS selectors to the given widget. You can do this by qualifying all selectors with
a CSS class that is the same name as the widget.

For instance, you could override all div elements in the CpWidget_custom_example widget by defining
a CSS rule of .CpwWidget_custom_example div { }.

Note

The CSS class name does not include the action name.

Summary

In this chapter we've covered the most important parts of creating a widget. From here we'll build on
what we can do in widgets, including communicating with Recite modules and using built-in user interface
components.

Chapter 3. Event Handling

The Recite Control Panel is an event-driven system. In other words, widgets will respond to certain things
happening.

Let's use the File Import widget as an example:

1. User selects a file to upload then begins the upload. Trigger an event that an "Uploading" status
message should be shown.

2. File continues to upload. Listen for an event that indicates how much has been uploaded and update
the display accordingly.

3. File completes uploading. Trigger an event that the "Uploading" status message should no longer
be shown.

4. Receive confirmation from server that file is uploaded. "File Browser" widget listens for this event.
Refreshes its display so the newly uploaded file is displayed.

You can trigger your own events and listen for events accordingly.

Naming of Events

Events are named in the format eventName.nameSpace. The hamespace is determined by what triggers
the event. Events triggered by modules are named module_moduleName.

Let's return to the previous file upload example to demonstrate this. When a file is uploaded, the server
sends back the following event: filecreated.module_assets.

The Recite Delegate Element

In the Control Panel there is a hidden special element called the Recite Delegate which all events go
through (this is aside from normal events that occur on DOM elements).

This element is accessible using the Recite.Delegate variable in your JavaScript controllers.

Triggering Events

To trigger an event on the delegate, call the trigger() method. The first argument is the name of the
event, while the second is any custom data you want to include with the element.

Let's use the file browser widget as an example. When a file is clicked, we trigger the
fileselected.module_assets event. We pass to this event the internal ID of the file that was selected.

The code to achieve this is as follows:

Recite.Delegate.trigger(
‘fileselected.module_assets',

{
}

id : fileId

)5

Listening For Delegate Events

To listen for any events in your widget, you can use the bind() method on the delegate element. Let's
listen for the fileselected.module_assets event we listened for:

Event Handling

Recite.Delegate.bind(
'fileselected.module_assets',
function(e, memo) {
Recite_Dialog.Alert({
msg : 'File with ID ' + memo.id +

})s

was selected’

)s

Note, however, that there is a fundamental flaw in this code: we need to unbind this listener when the
widget is destroyed, and this code doesn't allow us to do this easily.

You could call Recite.Delegate.unbind('fileselected.module_assets'), however, this would mean every
other widget listening for this event would also be unbound.

To deal with this, you must either pass the function as the second argument to unbind() (meaning you
can't use an anonymous function like in our example), or you can just use the Recite Tabs.Delegate()
method to originally bind the event.

Recite_Tabs.Delegate(
widget,
'fileselected.module_assets',
function(e, memo) {
Recite_Dialog.Alert({
msg : 'File with ID ' + memo.id +

})s

was selected’

)s

Binding the event in this manner means it will automatically be unbound when the widget is destroyed.

Note

You must pass the widget as the first argument to Delegate().

Listening For Other Events

You can listen for normal events (such as click) on normal events, just like we did in the sample index. js
earlier in this guide.

Once again, you must unbind the event when you're done, so to help with this we have the
Recite Tabs.Bind() method. The first argument is the widget; the second argument is the element (or
list of elements) to bind the event to; the third argument is the event to bind; the final argument is the
event handler function.

Here's the code we used to bind an event to the button we created when creating our sample widget.

Recite_Tabs.Bind(
widget,
widget.find('button[name=foo]"),
'click',
function(e) {
e.preventDefault();

Event Handling

Recite_Dialog.Alert({
msg : 'Button was clicked!’

})s
e

Automatically Triggered Events

Many events will be automatically triggered by the response to Ajax calls. For example -- as we covered
earlier -- when a file is uploaded the server will send back a filecreated.module assets event.

Refer to the Ajax Requests chapter for details on how send Ajax requests and how to send responses
containing events.

Chapter 4. Status Messages

When developing Ajax-powered applications it is important to keep users informed when background
actions are occurring. If they don't know that something is happening when they expect something to
be happening they might grow impatient or give up.

To keep users informed, Recite provides a mechanism for displaying status messages. There are two
types of status messages that can be displayed:

e Loading messages. These are displayed when a background action is occurring. This includes
processing a form, loading data, or any other action is occurring that the user may need to wait upon.

e Status updates. These are displayed after some action has occurred. For instance, if you upload a
file with the File Import widget a "File uploaded" message is displayed to the user so they know
the action has completed.

Many status messages are triggered automatically from responses to Ajax requests. For more information
on how send status messages from Ajax requests refer to the Ajax Requests chapter.

Triggering Loading Messages

To display a loading message, use the following code:
Recite.Delegate.trigger('loadstart.status');

This will display a status message that says Loading.... You can display a custom message by passing
an object with a string called msg as the second argument to trigger().

For example, to display the message Doing something..., you would use the following code:
Recite.Delegate.trigger('loadstart.status', { msg : 'Doing something...' });

By default the status message will be attached to the main browser window. If you want to attach it to a
different element you can pass the parent DOM element in the parent element of the second argument.

Hiding Loading Messages

Once your loading action has complete you should hide the status message so the user knows loading is
complete. Use the following code to hide the loading message:

Recite.Delegate.trigger('loadend.status');

If you passed a custom parent element when triggering the status message, you must pass that element
once again when hiding the loading message.

Triggering Status Updates

To display a status message you can do so in a similar fashion to displaying a loading message. The
difference is that you trigger the infostart.status event, you must include the message to display, and
you must specify the type of message.

Each message type will display in a different colour to indicate to the user whether an operation was
successful or if some error occurred. The available types are as follows:

10

Status Messages

e Recite_ Status.Types.INFO. An informational message.
e Recite_Status.Types.SUCCESS. Used to indicate success.

e Recite Status.Types.NOTICE. Used to indicate something worthwhile happened to the user. Typically
this status type is used when an item is deleted.

e Recite Status.Types.WARN. Used to display some kind of warning.
e Recite_Status.Types.ERR. Used to indicate an error occurred.
e Recite Status.Types.DEBUG. Used to display a debugging message.

For example to trigger a message that indicates success, you might use the following code:

Recite.Delegate.trigger(
'info.status’,

{
msg : 'Something good happened!',
type : Recite_Status.Types.SUCCESS

}
)s

Hiding Status Messages

Recite will take care of hiding status messages automatically. If you really must hide a status message,
you can trigger the infoend.status event.

Recite.Delegate.trigger('infoend.status");

11

Chapter 5. Ajax Requests

This chapter is yet to be written, but the following code demonstrates a controller and controller action
that set a status message and a custom event.

<?php

class Mymodule_SomeController extends Application_Module_Controller
{
public function indexAction()
{
$this->addStatusMessage(
'Some status message',
Application_Site_ Response_StatusMessage::STATUS_SUCCESS
)s
$this->addEvent(‘myevent.module_mymodule')
->addMemo('val1', 'Some value');
}
}
?>

12

Chapter 6. Form Processing

13

Chapter 7. Widget Management

14

Chapter 8. JavaScript API

This section documents the various JavaScript components that are available to widget developers.

Component Recite

This components contains a number of useful helper functions core to the operation of Recite CMS widgets.
There are additional utility methods that can be used in Recite_Util.

Method: Recite.GetUrl

<static> {String} Recite.GetUrl(target)

Get a real Recite CMS URL based on a string in module:controller:action syntax
var url = Recite.GetUrl('assets:asset:upload');

e Parameters:
e String target - The URL in module:controller:action syntax
e Returns:

e String The real URL that can be used for links or Ajax requests

Method: Recite.HasCss

<static> {Bool} Recite.HasCss(path)

Check if the CSS file with the given path has been loaded
if (Recite.HasCss('/path/to/styles.css')) { ... }

e Parameters:
e String path - The path of the CSS script to check for
e Returns:

e Bool Returns true if the CSS file has previously been loaded, false if not.

Method: Recite.LoadCss

<static> Recite.LoadCss(path)

Loads a CSS file. If the file has already been loaded it will not be loaded again.
Recite.LoadCss('path/to/styles.css');

e Parameters:

e String path - The path of the CSS file to load

15

JavaScript API

e Returns: Vvoid

Method: Recite.LoadScript

<static> Recite.LoadScript(path, fn)

Load a JavaScript script based on the specified path. If the script has already dynamically been loaded
with this function it will not be loaded again but the callback function will be called again.

Recite.LoadScript('/path/to/script.js, function() {
alert('script is loaded!');

});

e Parameters:
e String path - The path to the script to load
e Function fn - Optional - The function to call when the script has loaded. Accepts no arguments

e Returns: Void

Component Recite Ajax

This components contains methods for performing Ajax requests in the Recite CMS Control Panel.

Method: Recite Ajax.Ajax

<static> Recite_Ajax.Ajax(url, method, data, fnSuccess, fnError)

Perform an Ajax request. This will automatically interpret any returned events or messages from PHP
action handlers (unless you use your own success and/or error callbacks

Recite_Ajax.Ajax(
Recite.GetUrl('assets:asset:import'),
'post’,

{

}

'foo' : 'bar'
)s
e Parameters:

e String url - The URL to send the request to

e String method - Optional - The request method to use (get or post)

Object data - Optional - Any additional data to send with the request

e Function fnSuccess - Optional - Callback function when request completes (request may be
HTTP error)

e Function fnError - Optional - Callback function when request does not complete (e.g. if
network down)

e Returns: Vvoid

16

JavaScript API

Method: Recite Ajax.Error

<static> Recite_Ajax.Error(xhr, textStatus, errorThrown)

This is the callback method for a failed Ajax request. It automatically processes any included
events and status messages. You can chain this callback to your own Ajax handler by simply called
Recite_Ajax.Success() at the end of your handler (remembering to include the original parameters). This
will automatically display a status message indicating that an error occurred.

Recite_Ajax.Post(
Recite.GetUrl('assets:asset:import'),

{
'foo' : 'bar'
¥
null,
function(xhr, textStatus, errorThrown)
{
// do something, then chain to error
Recite_Ajax.Error(xhr, textStatus, errorThrown);
}

)s

e Parameters:
e XMLHttpRequest xhr - The transport object
e String textStatus - The text status message
e Mixed errorThrown - The error that occurred

e Returns: Vvoid

Method: Recite Ajax.Get

<static> Recite_Ajax.Get(url, data, fnSuccess, fnError)

Wrapper function for calling Recite_Ajax.Ajax() as a get request

Recite_Ajax.Get(
Recite.GetUrl('assets:asset:import")
)
e Parameters:
e String url - The URL to send the request to
e Object data - Optional - Any additional data to send with the request

e Function fnSuccess - Optional - Callback function when request completes (request may be
HTTP error)

e Function fnError - Optional - Callback function when request does not complete (e.g. if
network down)

e Returns: void

e See:

17

JavaScript API

e Recite_Ajax.Ajax

Method: Recite Ajax.Post

<static> Recite_Ajax.Post(url, data, fnSuccess, fnError)

Wrapper function for calling Recite_Ajax.Ajax() as a post request

Recite Ajax.Post(
Recite.GetUrl('assets:asset:import'),

{
}

foo' : 'bar'
)5

e Parameters:
e String url - The URL to send the request to
e Object data - Optional - Any additional data to send with the request

e Function fnSuccess - Optional - Callback function when request completes (request may be
HTTP error)

e Function fnError - Optional - Callback function when request does not complete (e.g. if
network down)

e Returns: Void
e See:

e Recite_Ajax.Ajax

Method: Recite Ajax.Success

<static> Recite_Ajax.Success(data)

This is the callback method for a successful Ajax request. It automatically processes any included
events and status messages. You can chain this callback to your own Ajax handler by simply called
Recite_Ajax.Success() at the end of your handler (remembering to include the original response JSON
data)

Recite_Ajax.Post(
Recite.GetUrl('assets:asset:import'),

{
'foo' : 'bar'

¥

function(data)

{
// do something, then chain to success
Recite_Ajax.Success(data);

}

)5

e Parameters:

e String data - The data returned from an Ajax request

18

JavaScript API

e Returns: Vvoid

Component Recite Dialog

Methods used for managing dialog boxes in the Recite CMS Control Panel

Method:

Recite Dialog.Alert

<static> Recite_Dialog.Alert(alertOptions)

Show an alert box with a static message. Alert boxes are simply information boxes with a single Ok button.

e Parameters:

Object alertOptions - The options used for displaying the dialog

String alertOptions.msg - The message to display in the alert box.

String alertOptions.title - Optional, Default: "Alert" - The text to use for the dialog title
String alertOptions.okText - Optional, Default: "Ok" - The text to use for the OK button

String|Integer alertOptions.width - Optional, Default: "500" - The width in pixels of the
dialog

String|Integer alertOptions.height - Optional, Default: "auto" - The height in pixels of the
dialog

e Returns: Void

Method:

Recite Dialog.Confirm

<static> Recite_Dialog.Confirm(confirmOptions)

Show a confirmation dialog using a static message. A confirmation dialog is a dialog that typically shows
two buttons: "Ok" and "Cancel".

e Parameters:

Object confirmOptions - The options used for displaying the dialog

String confirmOptions.url - Optional - The URL to post to when OK is clicked (if custom onOk
callback is not specified).

String confirmOptions.msg - The message to display in the confirmation box.

Object confirmOptions.data - Optional - Additional data to post when OK is clicked (if custom
onOk callback is not specified).

String confirmOptions.method - Optional, Default: "GET" - Whether the request should be GET
or POST

String confirmOptions.okText - Optional, Default: "OkR" - The text to use for the OK button

String confirmOptions.cancelText - Optional, Default: "Cancel" - The text to use for the
cancel button

String confirmOptions.title - Optional, Default: "Please Confirm" - The text to use for the
dialog title

19

JavaScript API

Function confirmOptions.onOk - Optional - Function to execute when OK is clicked. Accepts
dialog as its only argument. Dialog is not automatically closed if this is specified.

Function confirmOptions.onCancel - Optional - Function to execute when cancel is clicked.
Accepts dialog as its only argument. Dialog is not automatically closed if this is specified.

e Returns: void

Method:

Recite Dialog.ConfirmFromUrl

<static> Recite_Dialog.ConfirmFromUrl(confirmOptions)

Show a confirmation dialog using content loaded via AjaxA confirmation dialog is a dialog that typically
shows two buttons: "Ok" and "Cancel".

e Parameters:

Object confirmOptions - The options used for displaying the dialog

String confirmOptions.url - Optional - The URL to post to when OK is clicked (if custom onOk
callback is not specified).

Object confirmOptions.data - Optional - Additional data to post when OK is clicked (if custom
onOk callback is not specified).

String confirmOptions.method - Optional, Default: "GET" - Whether the request should be GET
or POST

String confirmOptions.msgUrl - The URL to retrieve the dialog message from

Object confirmOptions.msgData - Optional - Additional data to use in request for dialog
message. If request is get and includes query parameters, this should not be specified.

String confirmOptions.okText - Optional, Default: "Ok" - The text to use for the OK button

String confirmOptions.cancelText - Optional, Default: "Cancel" - The text to use for the
cancel button

String confirmOptions.title - Optional, Default: "Please Confirm" - The text to use for the
dialog title

Function confirmOptions.onOk - Optional - Function to execute when OK is clicked. Accepts
dialog as its only argument. Dialog is not automatically closed if this is specified.

Function confirmOptions.onCancel - Optional - Function to execute when cancel is clicked.
Accepts dialog as its only argument. Dialog is not automatically closed if this is specified.

e Returns: Void

Method:

Recite Dialog.FromAjax

<static> Recite_Dialog.FromAjax(url, data, method)

Fetch a dialog box and display it. The URL the dialog is fetch from must build a dialog using the PHP class
Application_Cp_Ui_Dialog (or a sub-class) and return it accordingly.

e Parameters:

String url - The URL to retrieve the dialog from

20

JavaScript API

e Object data - Optional - Any additional data to include in the Ajax request
e String method - Optional, Default: "get" - The request method to use (get or post)

e Returns: Void

Method: Recite Dialog.SelectorFromJSON

<static> Recite_Dialog.SelectorFromJSON(selectorOptions)
Show a dialog box with a single dropdown box. Options are retrieved from the supplied URL, then the user
must select an option. When they click Ok then selected option is passed to the supplied callback. The
selector must return data generated by a PHP sub-class of Components_DriverSelector_Options_Abstract.
Users can either select an option or cancel the dialog.
e Parameters:
e Object selectorOptions - The options used to generate the dialog
e String selectorOptions.url - The URL to retrieve the options from.

e String selectorOptions.emptyMsg - Optional - The message to display if no options are found

e String selectorOptions.emptyTitle - Optional, Default: "No options found" - The title to use
if no options are found

e String selectorOptions.msg - Optional - The message to display above the dropdown

e String selectorOptions.okText - Optional, Default: "Ok" - The text to display in the "Ok"
button

e String selectorOptions.cancelText - Optional, Default: "Cancel" - The text to display in the
"Cancel" button

e Function selectorOptions.select - The function that is called when an option is selected. The
value of the selected option is passed as the only argument

e Returns: Vvoid

Component Recite DragDrop

Methods for managing drag/drop between Recite CMS Control Panel widgets. This works in conjunction
with jQuery Ul's draggable components

Method: Recite DragDrop.BuildDragContainer

<static> {Element} Recite_ DragDrop.BuildDragContainer(dragNode, options)
Build a drag container that will be displayed when one or more items are being dragged
e Parameters:
e Element dragNode - The element being dragged
e Object options - Additional options for building the drag container

e String[] options.items - The identifiers of one or more items being dragged

21

JavaScript API

e String options.singular - Optional, Default: "item" - A singular name for the type of item
being dragged

e Stringoptions.plural - Optional, Default: "items" - A name for the type of item being dragged

e String options.type - A name to identify the type of node begin dragged. This is used so
droppables know whether or not to accept the item.

e Returns:

e Element The created DOM node that will be displayed as the drag element

Method: Recite DragDrop.GetDraginfo

<static> {Object} Recite DragDrop.GetDragInfo(dragNode)
This element returns information about what was dragged from a node that has just been dragged.
e Parameters:

e Element dragNode - The node that was just dragged. This should be the same element passed
to BuildDragContainer

e Returns:

e Object Information about the drag. The type is in the type property and the item IDs are in
the items property/

Component Recite Form

Methods used to manage forms in the Recite CMS Control Panel

Method: Recite Form.ClearErrors

<static> Recite_Form.ClearErrors(form)
Clear all errors previously populated with the PopulateErrors method
e Parameters:
e Element form - The DOM element to remove form errors from
e Returns: Void
e See:

e Recite_Form.PopulateErrors

Method: Recite Form.CreateWysiwyg

<static> Recite_Form.CreateWysiwyg(options)

Create a WYSIWYG editor dialog. You can add custom buttons to it and handle any buttons as required.
If you use the default buttons then an Ok and a Cancel button are shown.

e Parameters:

e Object options - The options used to build the WYSIWYG dialog

22

JavaScript API

String options.title - Optional, Default: "wySIwWYG" - The title of the dialog

Object options.buttons - Optional - Each element is indexed by the button label and the value
is the callback function. The dialog DOM element is passed as the first argument and the
contents of the WYSIWYG editor is passed as the second argument. The dialog will not be
automatically closed when these buttons are clicked.

String options.okText - Optional, Default: "okr" - If not manually specifying buttons this is
the text that will appear on the OK button

Function options.ok - Optional - If not manually specifying buttons this is the function to call
when the OK button is clicked. The WYSIWYG editor data is passed as the only argument to
this method. The dialog is automatically closed.

String options.cancelText - Optional, Default: "Cancel" - If not manually specifying buttons
this is the text that will appear on the cancel button

Function options.cancel - Optional - If not manually specifying buttons this is the function
to call when the cancel button is clicked. The WYSIWYG editor data is passed as the only
argument to this method. The dialog is automatically closed.

e Returns: void

Method:

Recite_Form.PopulateErrors

<static> Recite_Form.PopulateErrors(form, formErrors)

Populate a form with errors return from an Ajax request. Errors are populated based on their name, which
must match up with the name passed to {form_error} in the form template

e Parameters:

e Element form - The DOM element of the form

e String[] formErrors - The errors returned from the form.submitted event

e Returns: void

Method:

Recite Form.SerializeToObject

<static> {Object} Recite_Form.SerializeToObject(form)

Serialize a form into a normal object. This can then be passed as data to the Recite_Ajax.Ajax method

e Parameters:

e Element form - The form DOM element to serialize

e Returns:

e Object The serialized form values

e See:

e Recite_Ajax.Ajax

Method:

Recite Form.ShowFormSuccess

<static> Recite_Form.ShowFormSuccess(form, msg)

23

JavaScript API

Indicate that a form was successfully submitted. This message will be shown where the "global" form
error is normally display

e Parameters:
e Element form - The form DOM element that the success message should be shown within
e String msg - The message to display

e Returns: void

Method: Recite Form.SubmitViaAjax

<static> Recite_Form.SubmitViaAjax(form, fnSuccess, fnError)
Submit a form using Ajax
e Parameters:
e Element form - The DOM element of the form to submit

e Function fnSuccess - Optional - The function to execute if the form was all valid. Accepts the
form DOM element and the submitted.form event memo entry as its two arguments

e Function fnError - Optional - The function to execute if the form was all not valid. Accepts
the form DOM element and the submitted.form event memo entry as its two arguments

e Returns: void

Component Recite Tree

Functions related to using the JavaScript tree component in Recite CMS

Method: Recite Tree.GetDefaultOptions

<static> {Object} Recite_Tree.GetDefaultOptions()

Get default options to use for building a tree. This should be used as a starting point when a tree needs
to be loaded.

e Returns:

® Object

Method: Recite Tree.Getld

<static> {String|Integer} Recite Tree.GetId(id)
Retrieve the ID number from a tree-friendly internal ID
e Parameters:
e String id - The tree-friendly ID to extract the real ID from
e Throws:
e String

If the node isn't in a valid format

24

JavaScript API

e Returns:

e String|Integer The real ID

Method: Recite Tree.Setld

<static> {String} Recite_Tree.SetId(widgetId, id)
Get a tree-friendly ID based on the widget ID and the real ID
e Parameters:
e Integer widgetId - The ID of the widget this ID is being used for
e String|Integer id - The real ID
e Returns:

e String The tree-friendly ID

Component Recite Util

Various utility methods for Recite CMS

Method: Recite Util.GetHighlightMessage

<static> {Element} Recite Util.GetHighlightMessage(msg)
Get a DOM element that displays a highlighted message based using the input string
e Parameters:
e String msg - The message to highlight
e Returns:

e Element The highlighted element

Method: Recite Util.UrlGenerator

<static> Recite Util.UrlGenerator(src, dst, separator)

Automatically write a friendly URL-part into a text input based on the value of another input. If the URL
input is manually modified it will stop auto-generating.

e Parameters:
e Element src - The HTML input the URL part is generated from
e Element dst - The HTML input the URL part is written to
e String separator - Optional, Default: "-" - The string to separate words in the generated URL

e Returns: void

Method: Recite Util.Urlize

<static> {String} Recite Util.Urlize(str, separator)

25

JavaScript API

Make a string URL friendly. The resultant string will have only letters and numbers, and words will be
separated by the specified separator.

e Parameters:

e String str - The string to urlize

e String separator - Optional, Default: "-" - The word separator
e Returns:

e String The urlized string

26

Appendix A. Triggered Events

Every Recite CMS module triggers various events in various situations. This appendix lists these events
and data provided with them.

Module: Ads

The events in this section are triggered when ad management operations occur.

Zone Operations

The following events are triggered for zone management.
e zonecreated.module ads. Triggered when a zone is created.
e zonemodified.module_ads. Triggered when an existing zone is modified.
e zonedeleted.module ads. Triggered when a zone is deleted.
Each of these events send back the following data.
e id. Internal ID of the zone.

e title. Title of the zone.

Campaign Operations

The following events are triggered for campaign management.
e campaigncreated.module_ads. Triggered when a campaign is created.
e campaignmodified.module_ads. Triggered when an existing campaign is modified.
e campaigndeleted.module_ads. Triggered when a campaign is deleted.
Each of these events send back the following data.
e id. Internal ID of the campaign.

e title. Title of the campaign.

Linking Campaigns to Zones

The following events are triggered in relation to linking zones with campaigns.
e campaignlinkedtozone.module_ads. Triggered when a campaign is linked to a zone.
e zone_id. Internal ID of the zone.
e campaign_id. Internal ID of the campaign.
e campaignunlinkedfromzone.module_ads. Triggered when a campaign is unlinked from a zone.
e zone_id. Internal ID of the zone.

e campaign_id. Internal ID of the campaign.

27

Triggered Events

Banner Operations

The following events are triggered for campaign management.
e bannercreated.module_ads. Triggered when a banner is created.
e bannermodified.module_ads. Triggered when an existing banner is modified.
e bannerdeleted.module_ads. Triggered when a banner is deleted.
Each of these events send back the following data.
e id. Internal ID of the banner.
e campaign_id. Internal campaign ID the banner belongs to.

e title. Title of the banner.

Module: Assets

Events in this section apply to file management operations.

File Operations

The following events apply to file management. Each of these events relate to a single file.
e filecreated.module_assets. Triggered when a new file is created.
e filemodified.module_assets. Triggered when an existing file is updated.
e filedeleted.module assets. Triggered when an existing file is deleted.
e fileextracted.module assets. Triggered when an archive (such as a zip file) is extracted.
e filerestored.module_assets. Triggered when a file is restored to an older version.
The following data is included with each of these events.
e id. Internal ID of the file.
e folder_id. Folder ID of the file.
e filename. Current filename of the file.
In addition, the following event is also triggered:
e fileselected.module assets. Triggered when a file is selected in the Control Panel.

e id, The ID of the file that was selected.

Folder Operations

The following events apply to folder management. Each of these events relate to a single folder.
e foldercreated.module_ assets. Triggered when a new folder is created.
e foldermodified.module_assets. Triggered when an existing folder is updated.

e folderdeleted.module assets. Triggered when an existing folder is deleted.

28

Triggered Events

The following data is included with each of these events.
e id. Internal ID of the folder.
e parent_id. Folder ID of the folder's parent folder.
¢ name. Current name of the folder.
In addition, the following event is also triggered:
e folderselected.module_assets. Triggered when a folder is selected in the Control Panel.

e id. The ID of the folder that was selected.

Bulk Operations

The following events are sent back when bulk operations occur.
e filebulkmoved.module assets. Triggered when files are bulk moved.
e folder_ids. An array of folder IDs that were affected by the move.
e filebulkdeleted.module_assets. Triggered when one or more files are bulk deleted.

e file. This is an array where each entry corresponds to a moved file. This element contains
id, name and folder_id values.

e folderbulkdeleted.module assets. Triggered when one or more folders are bulk deleted.

e folder. This is an array where each entry corresponds to a moved folder. This element contains
id, name and parent_id values.

e bulkdeleted.module assets. Triggered when files and/or folders are bulk deleted. This will be
triggered with at least one of the previous two events.

e count. The total number of files/folders deleted.

Linking Files to Other Content

The following events relate to linking files to other content.
e linkedfilesupdated.module assets. Triggered when some content has its linked files updated.
e driver. The name of the connector linking the file(s) to the content.
e linked_id. The internal ID of the linked item.

e title. A descriptive title for the linked item.

Module: Assets Mirrors

29

Triggered Events

Module: Calendar

30

Triggered Events

Module: Categories

31

Triggered Events

Module: Comments

32

Triggered Events

Module: E-commerce

Module: Feeds

33

Triggered Events

Module: Forms

34

Triggered Events

Module: Listings

35

Triggered Events

Module: Mailing Lists

36

Triggered Events

Module: Pages

Module: Search

37

Triggered Events

Module: Templates

38

Triggered Events

Module: Users

39

Triggered Events

40

	Recite CMS Control Panel Widget Development Guide (BETA GUIDE ONLY)
	Table of Contents
	Chapter 1. Introduction
	Getting Started

	Chapter 2. Creating a Widget
	Directory Structure
	Creating PHP Controller File
	Creating a View Template
	Creating a JavaScript Controller File
	Creating a Widget CSS File
	Summary

	Chapter 3. Event Handling
	Naming of Events
	The Recite Delegate Element
	Triggering Events
	Listening For Delegate Events
	Listening For Other Events
	Automatically Triggered Events

	Chapter 4. Status Messages
	Triggering Loading Messages
	Hiding Loading Messages
	Triggering Status Updates
	Hiding Status Messages

	Chapter 5. Ajax Requests
	Chapter 6. Form Processing
	Chapter 7. Widget Management
	Chapter 8. JavaScript API
	Component Recite
	Method: Recite.GetUrl
	Method: Recite.HasCss
	Method: Recite.LoadCss
	Method: Recite.LoadScript

	Component Recite_Ajax
	Method: Recite_Ajax.Ajax
	Method: Recite_Ajax.Error
	Method: Recite_Ajax.Get
	Method: Recite_Ajax.Post
	Method: Recite_Ajax.Success

	Component Recite_Dialog
	Method: Recite_Dialog.Alert
	Method: Recite_Dialog.Confirm
	Method: Recite_Dialog.ConfirmFromUrl
	Method: Recite_Dialog.FromAjax
	Method: Recite_Dialog.SelectorFromJSON

	Component Recite_DragDrop
	Method: Recite_DragDrop.BuildDragContainer
	Method: Recite_DragDrop.GetDragInfo

	Component Recite_Form
	Method: Recite_Form.ClearErrors
	Method: Recite_Form.CreateWysiwyg
	Method: Recite_Form.PopulateErrors
	Method: Recite_Form.SerializeToObject
	Method: Recite_Form.ShowFormSuccess
	Method: Recite_Form.SubmitViaAjax

	Component Recite_Tree
	Method: Recite_Tree.GetDefaultOptions
	Method: Recite_Tree.GetId
	Method: Recite_Tree.SetId

	Component Recite_Util
	Method: Recite_Util.GetHighlightMessage
	Method: Recite_Util.UrlGenerator
	Method: Recite_Util.Urlize

	Appendix A. Triggered Events
	Module: Ads
	Zone Operations
	Campaign Operations
	Linking Campaigns to Zones
	Banner Operations

	Module: Assets
	File Operations
	Folder Operations
	Bulk Operations
	Linking Files to Other Content

	Module: Assets Mirrors
	Module: Calendar
	Module: Categories
	Module: Comments
	Module: E-commerce
	Module: Feeds
	Module: Forms
	Module: Listings
	Module: Mailing Lists
	Module: Pages
	Module: Search
	Module: Templates
	Module: Users

